DEFINITIONS, APPLICATION, AND THE HISTORY OF CULTURE NETWORKS
Definitions and tissue culture applications
Plant tissue culture is a method or technique to isolate parts of plants (protoplasm, cells, tissues, and organs) and grow them on artificial media in aseptic conditions in a controlled space so that parts of these plants can grow and develop into complete plants. The use of tissue culture techniques in the beginning just to prove the theory of "totipotensi" ( "total genetic potential") is expressed by Schleiden and Schwann (1838) which states that the plant cell as the smallest unit can grow and thrive if kept in appropriate conditions. We have used tissue culture techniques not only as a means for studying aspects of plant physiology and biochemistry, but has developed into methods for various purposes such as:
• Mikropropagasi (micro propagation of plants)
Tissue culture techniques have been used to help produce crops in large scale through mikropropagasi or klonal propagation of various plants. Plant tissue in very small amounts can produce hundreds or thousands of plants continuously. This technique has been used in industrial scale in various countries to commercially produce various types of plants such as ornamental plants (orchids, cut flowers, etc..), Fruit crops (like bananas), crops and forestry industries (coffee, teak, etc.) . By using tissue culture methods, millions of plants with the same genetic characteristics can be obtained only from one eye buds. Therefore, this method becomes an alternative in the vegetative propagation of plants.
• Improved crop
In crop improvement efforts through the glorification of the conventional methods, to obtain pure strains can take six to seven generations of self-pollination or crosses. Through tissue culture techniques, can be obtained homosigot plants in a short time by producing haploid plants through pollen culture, anther or ovaries followed by chromosome doubling. Homosigot plants can be used as plant breeding material in order to improve the nature of the plant.
• Production of disease-free plants (virus)
Tissue culture technology has contributed in a plant that is free from viruses. In plants that have been infected with the virus, the cells in the bud tip (meristem) is an area that is not infected with the virus. In this way the meristem will mengkulturkan obtained virus-free plants.
• Genetic transformation
Tissue culture techniques have become an important part in helping the success of plant genetic engineering (gene transfer). For example, bacterial gene transfer (such as cry genes from Bacillus thuringiensis) into the plant cells will be expressed after transgeniknya achieved plant regeneration.
• The production of secondary metabolites, compounds
Plant cell culture can also be used to produce biochemical compounds (secondary metabolites) such as alkaloids, terpenoids, phenyl etc. propanoid. This technology is now available in industrial scale. For example, the commercial production of compounds "shikonin" from Lithospermum erythrorhizon cell culture.
History of tissue culture
The use of tissue culture techniques initiated by Gottlieb Haberlandt in 1902 in an attempt mengkulturkan hair cells of the leaf mesophyll tissue monocot plant. But the effort failed because the cells do not have cleavage, it was alleged failures because they do not use growth regulator substances needed for cell division, proliferation and induction of the embryo. In the year 1904, Hannig planting embryos isolated from several plant crucifers. In 1922, Knudson and separately each Robbin conduct investment business and culture of orchid seedlings root tip. After the 1920s, the discovery and development of tissue culture techniques continues. The following table shows the historical development of the field of plant tissue culture which was adapted from various sources
Important discoveries in the history of plant tissue culture
YEAR important findings
Schleiden & Schwann 1838 theorized Totipotensi
1902 Haberlandt:: The first person who tried to isolate and mengkulturkan monocot plant tissue, but failed
1922 Knudson: mengecambahkan orchid seeds
Blumenthal & Meyer 1924: The formation of callus from carrot roots eksplan
1929 Laibach & Hered: Culture of embryos to overcome the incompatibility in plants Linum spp.
Gautheret 1934: Culture in vitro of woody plant tissue kambium and shrubs, but failed.
White: Successful culture of tomato roots in a long time
Kogl et.al. : Identification of the first plant hormone, IAA, for the elongation of cells.
1936 LaRue: Culture of embryos in some plants Gymnospermae
1939 Gautheret: Successfully growing culture kambium carrot and tobacco plants
1941 Overbeek: The use of coconut water for the young embryo culture menumbuhkam Datura plants
1944 The first in vitro culture of tobacco plants to study the formation of buds adventif
Skoog and Tsui 1948: The formation of shoots and roots of tobacco adventif
1949 Nitsch: in vitro culture of fruit plants
1952 Morel & Martin:
meristem culture to obtain a free Dahlia plant viruses. The first success of micro-called grafting.
1953 Tulecke: Kalus haploid pollen plants of Ginkgo biloba
Miller 1955: The discovery of the structure and synthesis of kinetin
Skoog & Miller 1957: Menemuan that the formation of roots and shoots in comparison tergatung culture auksin: cytokines
1958 Maheswari & Rangaswamy: Regeneration of somatic embryos Citrus nuselus ovul
Reinert & Steward: Growth and development of carrot suspension cultures
Cocking 1960: enzymatic degradation of cell walls to get protoplas
Morel: Vegetative Propagation of orchids by meristem culture
1962 Murashige & Skoog: Development of MS medium
1964 Guha & Maheswari: The discovery of the first haploid plants by androgenesis Datura plant
Erickson & Jonassen 1969: Isolation protoplas of cell suspension Hapopappus
1970 Power: Figaro protoplas
Chilton 1977: The success of T-DNA integration in plants
Noguchi et al.: Planting of tobacco cells in Bioreaktor capacity of 20 000 L.
1978 Melchers et al.: Somatic hybridization between tomato and potato plants
Tabata et al.: Production of shikonin on the industrial scale cell culture
Zimmermann 1982: Figaro protoplas electrically (Electrofusion)
Mitsui Petrochemicals 1983: The first secondary metabolite production in industrial scale through suspension culture at the plant Lithospermum spp.
1985-1990 Development of gene transfer in rapidly growing crops, such as the use of Agrobacterium, particle bombardment (gene gun), electroporasi, mikroinjeksi.
1990 - Development of genetic and metabolic engineering challenges. growing rapidly
Marketing products of genetic engineering
REFERENCES
1. Bhojwani, 1990. Plant Tissue Culture: Application & Limitations.
2. Gleba & Sytnik, 1984. Protoplast Fusion : Genetic Engineering in Higher Plants.
3. Green, Somers, Hacket & Biesboer, 1987. Plant Tissue and Organ Culture.
4. Pierik, 1987. In vitro Culture of Higher Plants.
5. Stafford & Warren, 1990. Plant Cell & Tissue Culture.
6. Taji, A., P. Kumar and P. Lakshamanan, 2002. In vitro plant breeding. The Haworth Press, Inc. New York.
Langganan:
Posting Komentar (Atom)
8 komentar:
You made good ideas here. I done a research on the topic and learnt nearly all peoples will agree with your blog. But that's for down the road.
Micropipette
wat
We strive to be your dental visits in the same way as comfortable and fitting
in the same way as on the cards, and we know with the aim of the difference is
in the sphere of the details. At this point are barely a only some of the facilities
with the aim of be our administrative center a unusual kind of dental administrative center
jamaica plain dentist
dentist in boston
dorchester dentist
south end dentist
nice blog related to the plant tissue culture.I read this topic and research on it.Round Baths are ideal for all applications requiring, reliable and safe reactions, extraction analysis and tests.
Round Oil Bath||Round Oil Bath Supplier
informative blog on plant tissue culture & enjoyed reading it
Thanks for sharing your valuable information.I found it very useful.Keep posting amazing content like this.
Plastic Labware India
Hey, Thank you so much for this post. It's really helpful.
CO2 Incubator Manufacturer & Suppliers | mortuary chamber manufacturers
Strongly suggest Plentilab for their effective and long-lasting plastic labware options.
Plastic Labware Manufacturers
Posting Komentar